Electrospun micelles/drug-loaded nanofibers for time-programmed multi-agent release.

نویسندگان

  • Guang Yang
  • Jie Wang
  • Long Li
  • Shan Ding
  • Shaobing Zhou
چکیده

Combined therapy with drugs of different therapeutic effects is an effective way in the treatment of diseases and damaged tissues or organs. However, how to precisely control the release order, dose, and time of the drugs using vehicles is still a challenging task. In this work, for the first time, a study to develop a nanoscale multi-drug delivery system based on polymer micelle-enriched electrospun nanofibers is presented. The multi-drug delivery system is achieved, first, by the fabrication of hydrophobic curcumin encapsulated micelles assembled from biodegradable mPEG-PCL copolymer and, second, by the blending of the micelle powder with hydrophilic doxorubicin in polyvinyl alcohol solution, followed by simply electrospinning this combination. Due to the different domains of the two drugs within the nanofibers, the release behaviors show a time-programmed release, and can be temporally and spatially regulated. In vitro tumor cell inhibition assay indicates that the delivery system possesses great potential in cancer chemotherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of drug release from paclitaxel loaded polylactic acid nanofibers

Objective(s): In this study, drug loaded electrospun nanofibrous mats were prepared and drug release and mechanism from prepared nanofibers were investigated.  Materials and Methods: Paclitaxel (PTX) loaded polylactic acid (PLA) nanofibers were prepared by electrospinning. The effects of process parameters, such as PTX concentration, tip to collector distance, voltage, temperature and flow rate...

متن کامل

Drug-loaded electrospun nanofibrous sheets as barriers against postsurgical adhesions in mice model

Objectives: Postsurgical adhesion is one of the common complications after surgery. Some anti-adhesion barriers are commercially available which are not customary used by physicians as much as expected because of ineffectiveness. Recently, nanofibers have been introduced as anti-adhesion barriers with t...

متن کامل

Preparation and evaluation of electrospun nanofibers containing pectin and time-dependent polymers aimed for colonic drug delivery of celecoxib

Objective(s):The aim of this study was to prepare electrospun nanofibers of celecoxib using combination of time-dependent polymers with pectin to achieve a colon-specific drug delivery system for celecoxib. Materials and Methods:Formulations were produced based on two multilevel 22 full factorial designs. The independent variables were the ratio of drug:time-dependent polymer (X1) and the amoun...

متن کامل

Synthesis and cytotoxicity evaluation of electrospun PVA magnetic nanofibers containing doxorubicin as targeted nanocarrier for drug delivery

Objective(s): The purpose of this study was preparation and evaluation of PVA-Fe3O4 nanofibers as nanocarrier of doxorubicin (DOX) by measuring their drug release together with their in vitro cytotoxicity toward cancer cells at different pH values. Methods: Fe3O4 nanoparticles were synthesized by coprecipitation...

متن کامل

Drug release rate and kinetic investigation of composite polymeric nanofibers

Objective(s): In this work, electrospun nanofibers were explored as drug delivery vehicles using tetracycline as a model drug.  Nanocomposite fibers including chitosan (CS)/poly (ethylene oxide) (PEO) and antibiotic were successfully prepared using electrospinning. CS blended with PEO considering a weight ratio of (90/10), and then, nanofibrous samples were successfully e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Macromolecular bioscience

دوره 14 7  شماره 

صفحات  -

تاریخ انتشار 2014